metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Naokazu Yoshikawa,^a* Jun Sakamoto,^b Nobuko Kanehisa,^c Yasushi Kai,^c Keiko Matsumura,^b Hiroshi Takashima^a and Keiichi Tsukahara^a

^aDepartment of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan, ^bDepartment of Chemistry, Nara University of Education, Nara 630-8528, Japan, and ^cDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-Oka 2-1, Suita, Osaka 565-0871, Japan

Correspondence e-mail: naokazuu@dg.mbn.or.jp

Key indicators

Single-crystal X-ray study T = 200 KMean σ (C–C) = 0.009 Å R factor = 0.040 wR factor = 0.091 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

cis-Dichlorobis(1,10-phenanthroline)iridium(III) hexafluorophosphate

The crystal structure of the title compound, $[IrCl_2(C_{12}H_8N_2)_2]PF_6$, contains a monomeric $[IrCl_2(phen)_2]^+$ cation (phen is 1,10-phenanthroline) and a hexafluorophosphate anion. The iridium(III) ion is coordinated by four N atoms from two phen ligands [mean Ir-N distance 2.050 (5) Å] and two Cl atoms [Ir-Cl = 2.343 (1) Å], forming a distorted octahedral environment.

Comment

As a third-row transition metal, Ir^{III} is characterized by the great inertness of its coordination sphere, requiring harsh reaction conditions to substitute the chlorine ligands of $(NH_4)_3[IrCl_6]\cdot H_2O$. In 1964, Chiswell *et al.* reported the preparation of $[IrCl_2(phen)_2]Cl$ by heating K_3IrCl_6 at 493 K for 14 h. In 2000, Yoshikawa *et al.* reported the preparation of $[IrCl_2(phen)_2]PF_6$ by using a microwave oven for 15 min. However, no single-crystal structure of an iridium complex with the 1,10-phenanthroline ligand has been reported previously. In this study, we have prepared and investigated the iridium bis-phenanthroline complex, (I).

The crystal structure of (I) consists of a discrete $[IrCl_2-(phen)_2]^+$ cation and a hexafluorophosphate anion. As illustrated in Fig. 1, the Ir^{III} atom is located in a distorted octahedral environment by two phen ligands and two chloride anions. The Ir-N bond lengths are in the range 2.046 (4)-2.053 (5) Å. Three *trans* angles are in the range 174.9 (1)-175.8 (2)°. It is coordinated by four N atoms from a pair of *cis*related chelating phen ligands and two Cl atoms [Ir-Cl1 = 2.343 (1) Å]. The equatorial plane is formed by atoms Cl1/N1/N2/N4, with the largest deviation from the mean plane being 0.023 (2) Å and the Ir atom being 0.126 (2) Å out of this plane. The axial positions are occupied by the fourth phen N atom and another Cl atom. Each phen ligand is planar and the maximum deviation from the mean plane is 0.205 (6) Å. The

Received 8 September 2003 Accepted 30 September 2003 Online 7 October 2003

 $D_x = 1.949 \text{ Mg m}^{-3}$

Cell parameters from 13893

Mo K α radiation

reflections

 $\mu = 5.44 \text{ mm}^{-1}$

 $\theta = 1.6 - 27.5^{\circ}$

 $T=200.2~{\rm K}$

 $R_{\rm int} = 0.061$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -21 \rightarrow 20$

 $k=-16\rightarrow 16$

 $l = -14 \rightarrow 16$

refinement

 $(\Delta/\sigma)_{\rm max} = -0.032$

 $\Delta \rho_{\text{max}} = 0.96 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.37 \text{ e } \text{\AA}^{-3}$

 $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Prism, yellow

 $0.13 \times 0.12 \times 0.10 \ \mathrm{mm}$

3007 independent reflections

2675 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids.

Figure 2

The molecular packing diagram of (I), projected down the c axis.

two Cl ligands are coordinated in a *cis* fashion, but PF_6^- is not coordinated to the iridium atom. The average length of the Ir—N bonds [2.050 (5) Å] and the average of the N1—Ir—N2 and N3—Ir—N4 ligand angles [80.6 (2)°] compare well with the values published for [IrCl₂(dmbpy)₂]PF₆ (Yoshikawa *et al.*, 2003) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), *viz.* 2.026 Å and 79.1°, respectively. The structure contains a channel down the *c* axis (Fig. 2). However, no hydrogen-bonding interactions exist in the crystal structure.

Experimental

The desired complex was prepared by the ligand replacement procedure. $(NH_4)_3[IrCl_6]\cdot H_2O$ (0.5 mmol) and 1,10-phenanthroline (1.0 mmol) were mixed in ethylene glycol (15 ml). The suspended mixture was refluxed for 15 min in a microwave oven under a purging nitrogen atmosphere. The mixture was then cooled to room temperature. A saturated aqueous solution of KPF₆ (20 ml) was added and a yellow product began to precipitate and was collected by vacuum filtration. The residue was dissolved in a minimal amount of acetone and flash precipitated in diethyl ether. The product was

separated by vacuum filtration and dried under a vacuum. Yellow single crystals were obtained by recrystallization from acetonitrile and water.

Crystal data

 $[IrCl_{2}(C_{12}H_{8}N_{2})_{2}]PF_{6}$ $M_{r} = 768.51$ Monoclinic, C2/c a = 16.340 (1) Å b = 12.679 (1) Å c = 12.9870 (8) Å $\beta = 103.321$ (2)° V = 2618.2 (4) Å³ Z = 4

Data collection

Rigaku RAXIS-RAPID Imaging Plate diffractometer ω scans Absorption correction: multi-scan *ABSCOR* (Higashi, 1995) $T_{min} = 0.426, T_{max} = 0.580$ 11793 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.091$ S = 1.202675 reflections 206 parameters

Table 1

Selected geometric parameters (Å, $^\circ).$

Ir1-Cl1	2.343 (1)	Ir1-N1 ⁱ	2.046 (4)
Ir1-Cl1 ⁱ	2.343 (1)	Ir1-N2	2.053 (5)
Ir1-N1	2.046 (4)	Ir1-N2 ⁱ	2.053 (5)
	00.02 (7)	Chi La Nai	04.4.(1)
	90.02 (7)	CII = IrI = N2	94.4 (1)
CII-IrI-NI	174.9(1)	N1-Ir1-N1	92.9 (2)
Cl1-Ir1-N1 ¹	88.7 (1)	N1-Ir1-N2	80.6 (2)
Cl1-Ir1-N2	94.4 (1)	N1-Ir1-N2 ⁱ	96.4 (2)
Cl1-Ir1-N2 ⁱ	88.5 (1)	N1 ⁱ -Ir1-N2	96.4 (2)
Cl1 ⁱ -Ir1-N1	88.7 (1)	N1 ⁱ -Ir1-N2 ⁱ	80.6 (2)
Cl1 ⁱ -Ir1-N1 ⁱ	174.9 (1)	N2-Ir1-N2 ⁱ	175.8 (2)
Cl1 ⁱ -Ir1-N2	88.5 (1)		

Symmetry code: (i) 2 - x, y, $\frac{1}{2} - z$.

All the H atoms were placed at calculated positions (C–H = 0.946-0.952 Å) and refined isotropically. The maximum and minimum electron-density peaks are 1.67 and 1.33 Å, respectively, from atoms F10 and Ir1.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *teXsan* (Molecular Structure Corporation/Rigaku, 2000); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *teXsan*.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Chiswell, B. & Livingstone, S. E. J. (1964). Inorg. Nucl. Chem. 26, 47–51.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation/Rigaku (2000). *teXsan*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Yoshikawa, N., Masuda, Y. & Matsumura-Inoue, T. (2000). Chem. Lett. pp. 1206–1207.
- Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E**59**, m155-m156.